Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Infomat ; 4(5), 2022.
Article in English | ProQuest Central | ID: covidwho-1837195

ABSTRACT

Bioelectronics are powerful tools for monitoring and stimulating biological and biochemical processes, with applications ranging from neural interface simulation to biosensing. The increasing demand for bioelectronics has greatly promoted the development of new nanomaterials as detection platforms. Recently, owing to their ultrathin structures and excellent physicochemical properties, emerging two‐dimensional (2D) materials have become one of the most researched areas in the fields of bioelectronics and biosensors. In this timely review, the physicochemical structures of the most representative emerging 2D materials and the design of their nanostructures for engineering high‐performance bioelectronic and biosensing devices are presented. We focus on the structural optimization of emerging 2D material‐based composites to achieve better regulation for enhancing the performance of bioelectronics. Subsequently, the recent developments of emerging 2D materials in bioelectronics, such as neural interface simulation, biomolecular/biomarker detection, and skin sensors are discussed thoroughly. Finally, we provide conclusive views on the current challenges and future perspectives on utilizing emerging 2D materials and their composites for bioelectronics and biosensors. This review will offer important guidance in designing and applying emerging 2D materials in bioelectronics, thus further promoting their prospects in a wide biomedical field.

2.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1066783

ABSTRACT

Here, we report the topology-matched design of heteromultivalent nanostructures as potent and broad-spectrum virus entry inhibitors based on the host cell membrane. Initially, we investigate the virus binding dynamics to validate the better binding performance of the heteromultivalent moieties as compared to homomultivalent ones. The heteromultivalent binding moieties are transferred to nanostructures with a bowl-like shape matching the viral spherical surface. Unlike the conventional homomultivalent inhibitors, the heteromultivalent ones exhibit a half maximal inhibitory concentration of 32.4 ± 13.7 µg/ml due to the synergistic multivalent effects and the topology-matched shape. At a dose without causing cellular toxicity, >99.99% reduction of virus propagation has been achieved. Since multiple binding sites have also been identified on the S protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), we envision that the use of heteromultivalent nanostructures may also be applied to develop a potent inhibitor to prevent coronavirus infection.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza A virus/drug effects , Influenza, Human/virology , Nanoparticles/chemistry , Neuraminidase/chemistry , Animals , Antiviral Agents/pharmacology , Binding Sites , Cell Membrane/metabolism , Dogs , Erythrocyte Membrane/virology , Humans , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virion , Virus Attachment/drug effects , Virus Internalization/drug effects
3.
Adv Mater ; 33(8): e2005477, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1039151

ABSTRACT

Besides the pandemic caused by the coronavirus outbreak, many other pathogenic microbes also pose a devastating threat to human health, for instance, pathogenic bacteria. Due to the lack of broad-spectrum antibiotics, it is urgent to develop nonantibiotic strategies to fight bacteria. Herein, inspired by the localized "capture and killing" action of bacteriophages, a virus-like peroxidase-mimic (V-POD-M) is synthesized for efficient bacterial capture (mesoporous spiky structures) and synergistic catalytic sterilization (metal-organic-framework-derived catalytic core). Experimental and theoretical calculations show that the active compound, MoO3 , can serve as a peroxo-complex-intermediate to reduce the free energy for catalyzing H2 O2 , which mainly benefits the generation of •OH radicals. The unique virus-like spikes endow the V-POD-M with fast bacterial capture and killing abilities (nearly 100% at 16 µg mL-1 ). Furthermore, the in vivo experiments show that V-POD-M possesses similar disinfection treatment and wound skin recovery efficiencies to vancomycin. It is suggested that this inexpensive, durable, and highly reactive oxygen species (ROS) catalytic active V-POD-M provides a promising broad-spectrum therapy for nonantibiotic disinfection.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Biomimetic Materials/chemical synthesis , Oxides/chemical synthesis , Peroxidase/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemistry , Biomimetic Materials/pharmacology , Catalysis , Humans , Hydrogen Peroxide/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Molecular Dynamics Simulation , Molybdenum/pharmacology , Oxides/pharmacology , Peroxidase/metabolism , Sterilization , Vancomycin/pharmacology
4.
Small ; 16(50): e2005060, 2020 12.
Article in English | MEDLINE | ID: covidwho-940996

ABSTRACT

To deal with the ever-growing toxic benzene-derived compounds in the water system, extensive efforts have been dedicated for catalytic degradation of pollutants. However, the activities and efficiencies of the transition metal-based nanoparticles or single-atom sites are still ambiguous in Fenton-like reactions. Herein, to compare the Fenton-like catalytic efficiencies of the nanoparticles and single atoms, the free-standing nanofibrous catalyst comprising Co nanocrystals and Co-Nx codoped carbon nanotubes (CNTs) or bare Co-Nx doped CNTs is fabricated. It is noteworthy that all these nanofibrous catalysts exhibit efficient activities, mesoporous structures, and conductive carbon networks, which allow a feasible validation of the catalytic effects. Benefiting from the maximized atomic utilization, the atomic Co-Nx centers exhibit much higher reaction kinetic constant (κ = 0.157 min-1 ) and mass activity toward the degradation of bisphenol A, far exceeding the Co nanocrystals (κ = 0.082 min-1 ). However, for the volume activities, the single-atom catalyst does not show apparent advantages compared to the nanocrystal-based catalyst. Overall, this work not only provides a viable pathway for comparing Fenton-like catalytic effects of transition metal-based nanoparticles or single atoms but also opens up a new avenue for developing prominent catalysts for organic pollutants' degradation.

5.
Annals Academy of Medicine Singapore ; 49(8):530-537, 2020.
Article in English | Web of Science | ID: covidwho-911261

ABSTRACT

Introduction: In this study, a comparison of clinical, epidemiological and laboratory parameters between symptomatic and asymptomatic children with SARS-CoV-2 infection was performed. Materials and Methods: Data from all children with laboratory confirmed SARS-CoV-2 infection admitted to KK Women's and Children's Hospital (KKH), Singapore, from January to May 2020 were analysed. Results: Of the 39 COVID-19 children included, 38.5% were asymptomatic. Household transmission accounted for 95% of cases. The presenting symptoms of symptomatic children were low-grade fever (54.2%), rhinorrhoea (45.8%), sore throat (25%), diarrhoea (12.5%) and acute olfactory dysfunction (5.4%). Children of Chinese ethnicity (37.5% vs 6.7%), complete blood count (45.8% vs 6.7%) and liver enzyme abnormalities (25% vs 7.7%) were more common in symptomatic versus asymptomatic children. All children had a mild disease course and none required oxygen supplementation or intensive care. Conclusions: The high proportion of asymptomatic infected children coupled with household transmission as the main source of paediatric COVID-19 infection underscores the importance of early screening and isolation of children upon detection of an index case of COVID-19 in a household. Symptomatic children were more likely to have abnormal laboratory parameters but they did not have a poorer outcome compared to asymptomatic cases.

6.
Nano Lett ; 20(7): 5367-5375, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-628240

ABSTRACT

Geometry-matching has been known to benefit the formation of stable biological interactions in natural systems. Herein, we report that the spiky nanostructures with matched topography to the influenza A virus (IAV) virions could be used to design next-generation advanced virus inhibitors. We demonstrated that nanostructures with spikes between 5 and 10 nm bind significantly better to virions than smooth nanoparticles, due to the short spikes inserting into the gaps of glycoproteins of the IAV virion. Furthermore, an erythrocyte membrane (EM) was coated to target the IAV, and the obtained EM-coated nanostructures could efficiently prevent IAV virion binding to the cells and inhibit subsequent infection. In a postinfection study, the EM-coated nanostructures reduced >99.9% virus replication at the cellular nontoxic dosage. We predict that such a combination of geometry-matching topography and cellular membrane coating will also push forward the development of nanoinhibitors for other virus strains, including SARS-CoV-2.


Subject(s)
Betacoronavirus/ultrastructure , Coronavirus Infections/virology , Nanostructures/ultrastructure , Pneumonia, Viral/virology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Coronavirus Infections/drug therapy , Drug Design , Humans , Influenza A virus/drug effects , Influenza A virus/ultrastructure , Microscopy, Electron , Models, Biological , Nanotechnology , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/drug effects , Spike Glycoprotein, Coronavirus/ultrastructure , Virus Internalization/drug effects
7.
Smart Mater Med ; 1: 48-53, 2020.
Article in English | MEDLINE | ID: covidwho-654444

ABSTRACT

The outbreak of a novel highly infectious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has aroused people's concern about public health. The lack of ready-to-use vaccines and therapeutics makes the fight with these pathogens extremely difficult. To this point, rationally designed virus entry inhibitors that block the viral interaction with its receptor can be novel strategies to prevent virus infection. For ideal inhibition of the virus, the virus-inhibitor interaction has to outperform the virus-host interaction. In our view, the morphology of the inhibitor should be carefully designed to benefit virus-inhibitor binding, especially that the surfaces of viruses are mostly rough due to the existence of surface proteins for receptor-binding. In this perspective article, we would like to discuss the recent progress of designing inhibitors with spiky topography to maximize the interactions between viruses and inhibitors. We also would like to share our idea for the future study of inhibitors to prevent virus infection.

SELECTION OF CITATIONS
SEARCH DETAIL